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a b s t r a c t

Neural representations of words are thought to have a complex spatio-temporal cortical basis. It has been
suggested that spoken word recognition is not a process of feed-forward computations from phonetic to
lexical forms, but rather involves the online integration of bottom-up input with stored lexical knowl-
edge. Using direct neural recordings from the temporal lobe, we examined cortical responses to words
and pseudowords. We found that neural populations were not only sensitive to lexical status (real vs.
pseudo), but also to cohort size (number of words matching the phonetic input at each time point)
and cohort frequency (lexical frequency of those words). These lexical variables modulated neural
activity from the posterior to anterior temporal lobe, and also dynamically as the stimuli unfolded on
a millisecond time scale. Our findings indicate that word recognition is not purely modular, but relies
on rapid and online integration of multiple sources of lexical knowledge.

˘ 2015 Elsevier Inc. All rights reserved.
1. Introduction

Many theoretical accounts of spoken word recognition posit a
process of matching acoustic input with stored representations
that have rich lexical and semantic structure. These models assume
the existence of acoustic–phonetic, phonemic, and lexical targets
in the brain that are activated when specific input is received
(Marslen-Wilson, 1987, 1989; McClelland & Elman, 1986; Norris,
1994). For example, hearing the word ‘‘cat” evokes activity in neu-
ral populations that are selective to phonetic features like plosives
and low front vowels, which in turn activate stored representations
of the phonemes /k/, /æ/, and /t/. The activations of these
phonemic representations are integrated over time, and serve as
inputs to neurons at the lexical level that represent the word ‘‘cat”.
The dynamic nature of this process has led many researchers to
suggest that the representations in this hierarchy interact with
and influence each other, meaning that word recognition is an iter-
ative process where multiple targets at each level are active until
the input is no longer consistent with those targets (e.g., /k-æ-p/)
(Heald & Nusbaum, 2014; Marslen-Wilson & Welsh, 1978).
Several influential models of the neural basis of speech compre-
hension (Hickok & Poeppel, 2007; Scott & Wise, 2004) propose a
set of cortical regions that perform the transformation from spec-
trotemporal representations of speech signals to abstracted lexical
representations of words. These proposals are based on data from
patients with lesions to various cortical areas (Dronkers & Wilkins,
2004), and on recent neuroimaging studies that support a dis-
tributed and interconnected network of cortical regions thought
to be responsible for the representation of words and language
(see, e.g., Davis & Gaskell, 2009; Turken & Dronkers, 2011). Many
of these studies observe functional specialization of different
regions in the temporal lobe, with acoustic–phonetic and
phonemic representations in the posterior superior temporal
cortex, and higher-order lexical representations in the middle,
anterior, and ventral temporal cortex. This pathway is often
referred to as the auditory ventral stream and is argued to link
acoustic, phonemic, and lexical processing (see also DeWitt &
Rauschecker, 2012; Okada et al., 2010; Lerner, Honey, Silbert, &
Hasson, 2011).

However, it remains unclear how this transformation occurs,
and specifically how the ventral stream integrates high-level
knowledge about the language with bottom-up acoustic input. In
particular, the mental lexicon can be characterized by a number
of features and statistics that relate the stored representations of
individual words with one another, and also with lower-level
features like phonemes and phonetic features. As a speech token
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Table 1
Stimuli used in the study.

Words Pseudowords
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unfolds, a cohort of forms stored in the lexicon that match the
acoustic input is activated (Marslen-Wilson, 1987, 1989). This
matching set of lexical forms (the cohort) will change over time
as more of the target word is heard, thereby changing the lexical
competition space on a moment-by-moment basis. It is therefore
necessary to capture the temporal dynamics of these changing lex-
ical statistics when describing the processes involved in word com-
prehension. A primary goal of the present study is to describe the
spatiotemporal dynamics of spoken word recognition across the
duration of a word, and across the auditory ventral stream.

In the present study, we compare neural responses to real
words (e.g. ceremony, repetition) and novel forms, or pseudowords
(e.g. moanaserry, piteretion), to examine how this lexical structure
is encoded in the brain. Several studies have found differences in
the hemodynamic response to real words and pseudowords
(Davis & Gaskell, 2009; Mainy et al., 2008; Mechelli, Gorno-
Tempini, & Price, 2003; Raettig & Kotz, 2008; Tanji, Suzuki,
Delorme, Shamoto, & Nakasato, 2005). However, it is likely that
the word/pseudoword difference is not purely binary; in particular,
there is behavioral evidence that word-like forms may be pro-
cessed as potential real words (De Vaan, Schreuder, & Baayen,
2007; Lindsay, Sedin, & Gaskell, 2012; Meunier & Longtin, 2007).
Taken together, these findings suggest that while neural responses
to pseudowords can be reliably distinguished from familiar word
forms, the processing of novel forms may also rely on information
stored in the lexicon, including high-level features like cohort
statistics. Therefore, a second goal of this study is to explore how
this type of stored lexical information can affect the processing
of both pseudowords and real words.

Lexical statistics which capture aspects of lexical competition
may be of particular importance for both real word and pseu-
doword processing. Cohort size (Magnuson, Dixon, Tanenhaus, &
Aslin, 2007; Marslen-Wilson, 1987, 1989) is defined as the number
of words in the lexicon that match the phonemes the listener has
heard up to any given point in a word. This provides an incremen-
tal metric of potential lexical forms which changes as acoustic
input is received. Average cohort frequency, by contrast, is defined
as the average lexical frequency of the words in a cohort. Finally,
summed cohort frequency sums the lexical frequency of all words
in a cohort, thus quantifying the number of words and their rela-
tive usage statistics in a single metric. The extent to which neural
activity evoked by real words and pseudowords is modulated by
these features allows us to explore the specific linguistic processes
involved in the acoustic-to-lexical transformation.

To study the on-line processing of lexical forms and cohort
statistics, we examined cortical responses to real words and pseu-
dowords using data recorded from high-density electrocortico-
graphic (ECoG) electrodes placed directly on the cortical surface.
ECoG provides high spatial and temporal resolution with a rela-
tively high signal-to-noise ratio at the individual electrode level.
These properties are critical to our study goals of examining how
the lexical status and cohort statistics of specific speech tokens
affect neural activity as the input is being processed in real-time.
Because the neural representations of words are complex,
distributed, and likely represented in a high-dimensional space,
these methodological advantages may be necessary to uncover
the nature of lexical processing.
ceremony moanaserry [mo͜ʊnəseɹi]
delivery lerivedy [ləɾɪvədi]
federation reifadetion [ɹe͜ɪfədeʃən]
majority jatoremee [

͜

dʒətɑɹəmi]
minority tomeereneye [təmiɹəna͜i]
motivation veimatoshen [ve͜ɪməto͜ʊʃən]
repetition piteretion [pɪtɚeʃən]
solitary letarossy [leɾɚɑsi]
velocity tesolivy [təsɑləvi]
voluntary reventally [ɹevəntɑli]
2. Methods

2.1. Subjects

Four human subjects underwent surgical placement of a
256-channel subdural electrocorticography (ECoG) array as part
of clinical treatment for epilepsy. All electrode arrays were placed
over the perisylvian region of the language-dominant hemisphere
(left hemisphere for all but subject 3; no observable patterns dif-
ferentiated the right hemisphere data from the left hemisphere
data). All subjects gave informed written consent prior to surgery
and experimental testing.

2.2. Stimuli

2.2.1. Stimulus design
The stimulus set consisted of ten words and ten pseudowords.

Words were four syllables long, and each syllable had consonant–
vowel or consonant–vowel–consonant structure. Pseudowords
were formed from the real words by scrambling syllables or
segments to form phonotactically-legal novel sequences (e.g. ‘‘cer-
emony” became ‘‘moanaserry,” ‘‘repetition” became ‘‘piteretion”).
Stimuli are listed in Table 1.

2.2.2. Lexical statistics
Cohort size, average cohort frequency, and summed cohort fre-

quency were calculated for each stimulus at each phoneme. Cohort
size was defined as the number of competitors that matched the
segment identity (but not necessarily the stress pattern) of a stim-
ulus up to a given point. As an example, after three phonemes, the
word delivery [dɪlɪvɚi] has a cohort size of 67, and the cohort
includes words such as delete [dɪlit] and delicious [dɪlɪʃəs].
Average cohort frequency was defined as the average of the lexical
frequency of each cohort member (Luce & Large, 2001). Summed
cohort frequency was calculated by summing the lexical frequency
of all members in a cohort. An example of cohort size, average
cohort frequency, and summed cohort frequency is shown in
Fig. 1a.

Cohorts were initially identified by sorting segmental informa-
tion in the CMU Pronouncing Dictionary (Weide, 2007). Because
the CMU corpus contains many entries that are proper nouns or
extremely unfamiliar forms, the resulting cohorts were filtered
through the Irvine Phonotactic Online Dictionary (IPhOD, Vaden,
Halpin, & Hickok, 2009), which provides lexical frequency informa-
tion for more than 54,000 words. We also calculated average
cohort frequency and summed cohort frequency at each segment.
Frequency counts were drawn from the SUBTLEXus database
included in IPhOD (SCDcnt, Brysbaert & New, 2009). Our metrics
of cohort frequency allow for a phoneme-by-phoneme accounting
of lexical frequency, which was more suited to the non-
decomposable pseudowords in our data set. Following Magnuson
et al. (2007), cohort statistics were calculated starting at the sec-
ond phoneme and models described below were likewise fit from
the second phoneme onward. Cohort size and summed and aver-
age cohort frequency values are plotted as a function of time for
all stimuli in Fig. 1b.

In preliminary analyses of the stimuli, we examined phonotac-
tic probability as a possible source of sublexical differences
between words and pseudowords. We found no differences



Fig. 1. Lexical statistics and neural data analysis approach. (a) Cohort size and cohort frequency for the stimulus ‘‘federation” change as more of the acoustic waveform is
heard. At the offset of the second phoneme, many word forms (e.g. ‘‘feral”, ‘‘felt”, ‘‘federation”, ‘‘fend”, ‘‘felon”) are possible matches to the acoustic input. As a listener hears
each successive segment in the stimulus, the number of possible English words shrinks, and the average lexical frequency of that set of words changes. (b) Lexical statistics for
all stimuli across their duration. Each point represents a segment in a stimulus and the corresponding lexical statistics associated with that stimulus at that time in the
duration of that stimulus. (c) To examine how these lexical statistics are encoded in the temporal lobe, growth curve analysis (GCA) was used to model interactions between
lexical statistics and time. The black curve on each plot shows an example of the predicted neural response in a single electrode, as generated by a GCAmodel. To illustrate the
effect that each polynomial time term has on the predicted curve generated by the model, the dashed and dotted lines show simulated 50% positive and negative adjustments
of each interaction term, holding all others constant. Each term’s independent contribution to the prediction affects either the height of the curve, steepness of the curve,
centeredness of the curve, or shape of the curve at its tails.
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between the two groups of stimuli in the current study for
measures of unstressed biphone probability (unweighted,
frequency-weighted, and log-frequency weighted; all p > 0.05).
Unstressed positional probability marginally differed between
the two groups (t = 1.754, p = 0.097), although the frequency-
weighted and log-frequency-weighted metrics of positional proba-
bility did not (p > 0.05). Because the effect of positional probability
was marginal, we included it as a control variable in the initial
model, but ultimately removed it, as its inclusion did not improve
the model fit. We also investigated the possible effects of acoustic
or phonetic properties of the stimuli, but these properties were
ruled out as meaningful covariates in the present study (see
Supplement for discussion of phonetic controls).

2.3. Experimental procedures

Data from this study were collected from the listening portion
of an overt repetition task. Subjects listened to each stimulus and
repeated back what they heard. Task design for repetition varied
slightly by subject; for subjects 2 and 3, repetition was self-
paced, while subjects 1 and 4 were instructed to wait for a cue
before repeating the word. Each stimulus was played and repeated
back twice per block. Subjects 1 and 2 completed two blocks of the
experiment, subject 3 completed five blocks, and subject 4 com-
pleted four blocks.

2.4. Data analysis

2.4.1. Data acquisition and pre-processing
ECoG recordings can provide high spatial and temporal resolu-

tion of cortical areas that are known to be critical speech regions of
the auditory ventral stream. The high-gamma frequency band of
the recorded cortical surface potential has several favorable
properties, including high signal-to-noise ratio, and is argued to
be more spatially and temporally locked to task-related activity
than responses at lower frequencies (Crone, Sinai, &
Korzeniewska, 2006). Because it is thought to be a reliable index
for neuronal activity in tasks across a range of functions and
modalities (Crone, Boatman, Gordon, & Hao, 2001; Edwards,
Soltani, Deouell, Berger, & Knight, 2005; Canolty et al., 2007;
Flinker, Chang, Barbaro, Berger, & Knight, 2011), it is well-suited
to investigate linguistic processes. For these reasons, high-
gamma has become a standard measure in investigations of spoken
language processing that use intracranial recordings (e.g. Mainy
et al., 2008; Tanji et al., 2005; Towle et al., 2008).

ECoG data was recorded as local field potentials from 256-
channel cortical arrays and a multichannel amplifier connected
to a digital signal processor (TuckerDavis Technologies). Data
was sampled at 3052 Hz and downsampled to 400 Hz for inspec-
tion and pre-processing (and ultimately to 100 Hz for analysis with
statistical models, following steps described in this section). The
data were visually inspected for noisy channels and time points
containing artifacts, which were removed prior to analysis;
remaining channels were common-average referenced on
16-channel blocks, corresponding to amplifier inputs. The high-
gamma band (70–150 Hz) was extracted for analysis from the
average of eight logarithmically-spaced band-pass filters using
the Hilbert transform (each band logarithmically increasing in
center frequency from 70 to 150 Hz, and bandwidth increasing
semi-logarithmically). The analytic amplitude across all eight
bands was averaged to calculate the high-gamma power (for more
detail, see Bouchard, Mesgarani, Johnson, & Chang, 2013). The
high-gamma analytic amplitude was then z-scored relative to a
baseline resting period at the end of each recording session for
each electrode. Analyses were restricted to electrodes over the
temporal lobe (Fig. 2a). We further restricted our analyses to only



Fig. 2. Spatiotemporal patterns of neural activity across electrodes. (a) Electrode coverage for subject 1. The spatial scale of the grid is indicated in the lower box. Distance is
measured along an anterior–posterior line, along the Sylvian fissure, with anatomical reference point of the ventral-most aspect of the central sulcus (position = 0). (b)
Average high-gamma analytic amplitude (AA) response to words and pseudowords across all electrodes (combined across all subjects). Neural responses to words (red) and
pseudowords (blue; shading indicates 95% confidence intervals around the mean at each time point) show prolonged differences, with generally greater responses to
pseudowords (black bar; bootstrap p < 0.05). Lower box plots show stimulus length for words and pseudowords, which are not significantly different (p = 0.148). (c) Timing of
the peak of neural responses to words and pseudowords in all electrodes, in all subjects, across the anterior–posterior span of the temporal lobe.
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those electrodes that showed responses that were significantly
time-locked to the stimulus (relative to a resting baseline period;
FDR correction, adjusted p < 0.05). A total of 300 electrodes across
all subjects were identified for analysis (84 from subject 1; 68 from
subject 2; 88 from subject 3; 60 from subject 4).

2.4.2. Audio processing and event time alignment
Acoustic event onsets were identified using automatic

phoneme- and word-level alignments generated by the Penn
Phonetics Lab Forced Aligner (Yuan & Liberman, 2008). The output
of the aligner was hand-corrected in any cases where word bound-
aries were judged by visual inspection to be inaccurately aligned to
the acoustic signal.

2.4.3. Growth curve analysis
We hypothesized that differential neural responses to words

and pseudowords, in different electrodes across time, reflect the
encoding of various lexical features. Traditional techniques for
examining condition-specific effects over time involve performing
a series of independent tests on non-independent contiguous time
points, or on wide time windows that potentially average out
meaningful temporal variation. To directly examine how lexical
processing varies over time, we used growth curve analysis
(GCA), a statistical method that explicitly models the encoding of
variables of interest (e.g. cohort size, average cohort frequency
and summed cohort frequency) as a function of time (Magnuson
et al., 2007; Mirman, Dixon, & Magnuson, 2008). GCA is a linear
mixed effects regression modeling technique that handles time
series data; it uses polynomial time terms to account for the shape
and rate changes in a curve, and includes interactions with vari-
ables of interest to describe their effect on the trajectory of the
dependent variable. Mirman et al. (2008) demonstrate that analy-
ses with discrete time bins fail to capture meaningful variability in
eye-tracking data, which are temporally fine-grained, and that GCA
models are better suited to describing the influences of linguistic
predictors at different time points in a trial. Similarly, our data
have fine-grained temporal resolution, and require a modeling
technique that can capture the dynamics of linguistic processing
as speech unfolds over time.

A GCA model was fit to the high-gamma response across all
electrodes with a fourth-order (quartic) orthogonal polynomial
and fixed effects of lexicality (pseudoword vs. word), cohort size,
average cohort frequency, summed cohort frequency, trial order,
anterior–posterior grid position (A–P position), and dorsal–ventral
grid position (D–V position). Continuous predictors (all but
lexicality) were centered around 0. Interactions were included
between each of the linguistic main effects (lexicality, cohort size,
summed cohort frequency, and average cohort frequency) and
each polynomial term and position term (A–P and D–V).
Two-way interactions were also included between pairings of the
linguistic variables. The random effects structure of the model con-
sisted of random intercepts for subject, stimulus, and electrode,
and by-electrode random slopes for the first- and second-order
time terms. A full description of the model is presented in
Supplementary Table 1. The dependent variable (high-gamma
activity) was log-transformed for normality. The window for anal-
ysis was from the onset of the second phoneme to 1500 ms after
word onset; all stimulus offsets occurred several hundred millisec-
onds before the end of this window.

Because all of the cohort metrics included in this model are cor-
related to some extent, we took care to ensure that their inclusion
did not lead to model over-fitting. A test between all of our contin-
uous predictors indicated that multicollinearity was not an issue
(j = 8.9; values below 10 are considered to be safe). We also
constructed three similar models, where only two of the cohort
metrics were included. The best two-metric model (cohort size
and summed cohort frequency) was a worse fit to the data than
the three-metric model (Akaike Information Criteron [AIC],
two metric: �2396842; AIC, three-metric: �2397393; v2 (18)
= 947.39, p < 0.0001). As a result, we chose to retain all three
metrics in the model reported here.

The interpretation of models with many higher-order interac-
tions is complex. To illustrate how the magnitude of model terms
affects the predicted curves generated by the model, Fig. 1c
demonstrates the effect of adjusting time parameters in a sample
growth curve model. In this example, we show the effects of
adjusting the magnitude of the lexicality * time term interactions
in one electrode, holding all other predictors (including the three
cohort metrics) constant. The plots show the model prediction
for all word stimuli over time (black lines), with 50% increases
and decreases made to each lexicality * time coefficient indepen-
dent of the others. Each nth-order term affects the curve in a differ-
ent way. The intercept term shifts the curve up or down; the linear
term (lexicality * time) adjusts the steepness or shallowness of the
slope; the quadratic term (lexicality * time2) affects the centering
of the peak of the curve; the cubic (lexicality * time3) and quartic
(not shown, as its effects tend to be subtle) terms adjust the curve
at its tails (Mirman et al., 2008). Each higher order term introduces
an additional inflection point, with a flip in the relative magnitude
of the +50% and �50% adjustments at each point. The effect of each



70 E.S. Cibelli et al. / Brain & Language 147 (2015) 66–75
predictor on the shape of each electrode’s response curve indicates
whether a given linguistic variable causes stronger or weaker
responses, earlier or later peaks, and sharper or more sustained
activity.
3. Results

3.1. Timing and location of responses to real words and pseudowords

Real words and pseudowords evoked different high-gamma
neural responses across many temporal lobe electrodes (see
Fig. 2a for electrode placement in one subject) in all participants,
with typically stronger activity for pseudowords (Fig. 2b). This lex-
icality effect was significant between 320 and 1500 ms (bootstrap
p < 0.05). In addition to these magnitude differences, there was a
clear progression in the timing of the peak of the neural response
from posterior to anterior temporal lobe electrodes (Fig. 2c), that
differed between real words (R2 = 0.13) and pseudowords
(R2 = 0.06). Across electrodes with significant high-gamma
responses, the peak latency for pseudowords was significantly later
than for real words (two-sample t-test, t (497.3) = �5.9248,
p < 0.001). Thus, we observed overall magnitude and timing
differences between real words and pseudowords throughout the
superior temporal lobe during online speech processing.

3.2. Growth curve analysis

The above analyses of the high-gamma responses at each elec-
trode illustrate that differential neural responses to words and
pseudowords are dynamic over the course of processing. To exam-
ine the fine-scale temporal properties of lexical processing in the
temporal lobe, we used growth curve analysis (GCA) to model neu-
ral activity on each electrode as a function of lexical variables and
time. This technique avoids the problems associated with using
discrete and arbitrary time windows, and takes full advantage of
the high temporal resolution that ECoG affords. The full table of
coefficients for this model is reported in Supplemental Table 1.

3.2.1. Effects of linguistic variables and electrode position
We examined the relationship between high-gamma activity

and stimulus lexicality (real word vs. pseudoword), cohort size
(the number of words in the lexicon consistent with the phonetic
input at a given point in time), average cohort frequency (the mean
lexical frequency of all cohort competitors at a given time), and
summed cohort frequency (the total lexical frequency of all cohort
competitors at a given time). The coefficients for the simple main
effects of each of these linguistic variables are not very informative,
as each predictor enters into higher-order interactions which are
critical to the interpretation their overall effects. Therefore, we
restrict our discussion of the effects of each linguistic variable to
their interaction terms, beginning with the effect of position.

We first considered how the effect of lexicality varied across the
temporal lobe. The interaction of lexicality and anterior–posterior
(A–P) position along the temporal lobe was significant (b = 0.006,
t = 6.79). As activity propagated from posterior to anterior,
responses to pseudowords increased, while they decreased for
words. There was no significant interaction of lexicality and dor-
sal–ventral (D–V) position (b = �0.0008, t = �0.04).

We also examined whether cohort size varied as a function of
electrode position. There was a significant cohort size by A–P posi-
tion interaction (b = �0.009, t = �7.22). This effect was most appar-
ent at the larger cohorts, which showed smaller responses in
posterior sites and larger responses at anterior sites. In smaller
cohorts, this effect of A–P position was much less pronounced.
There were significant interactions of average cohort frequency
with both A–P position (b = �0.0009, t = �5.47) and D–V position
(b = �0.0002, t = �5.55). Summed cohort frequency also had signif-
icant interactions with both A–P position (b = 0.0001, t = 7.64) and
D–V position (b = 0.0004, t = 9.07). These terms suggest that the
number of lexical competitors is encoded along the anterior–poste-
rior extent of the temporal lobe, while frequency effects have both
anterior–posterior and dorsal–ventral gradients.

Together, the positional effects of lexicality, cohort size, average
cohort frequency, and summed cohort frequency demonstrate that
hierarchical speech processing in the temporal lobe is influenced
not only by the lexical status of a form, but also by high-order
statistics that describe learned knowledge about the structure of
the mental lexicon, including the complex relationships between
words.

3.2.2. Interactions between linguistic variables
A major goal of the study was to understand how the combined

influences of several lexical statistics influence the processing of
both words and pseudowords. It is possible that the effects of
stored lexical knowledge for processing familiar forms differ when
compared to the effects for novel forms. Similarly, it is possible that
the different cohort metrics interact with one another in different
ways as incoming speech is being processed. To test this, we exam-
ined all two-way interactions of the linguistic variables (lexicality,
cohort size, average cohort frequency, and summed cohort
frequency).

Lexicality significantly interacted with cohort size (b = �0.007,
t = �3.38), but not with the other cohort metrics. The overall mag-
nitude of the cohort size effect was larger for words than pseu-
dowords. This suggests that there was a larger difference in the
neural response at large and small cohorts for words than pseu-
dowords (Fig. 3a shows the responses predicted by the model
across cohort sizes for this interaction).

There was a significant interaction between cohort size and
average cohort frequency (b = 0.0059, t = 13.84; Fig. 3b). For visual
convenience, average cohort frequency is split into three bins
(high, mid, and low). Across all bins, responses are stronger at lar-
ger cohort sizes; however, this effect is much more pronounced for
the most frequent cohorts, and is attenuated for mid- and low-
frequency cohorts.

A different relationship holds for the interaction of cohort size
and summed cohort frequency (b = �0.0009, t = �6.56; Fig. 3c). In
this case, the neural response decreases as cohort size decreases
for the highest and mid-range summed frequency bins. However,
for the bin with the lowest summed frequency, the opposite effect
was observed, where less frequent cohorts have a larger response
as cohort size decreases.

Finally, average cohort frequency and summed cohort fre-
quency significantly interacted (b = �0.0019, t = �14.61; Fig. 3d),
suggesting that the two frequency metrics have dissociable effects.
The highest and mid-range summed frequency bins had a negative
relationship with average frequency, where decreasing average
cohort frequency was associated with an increased neural
response. For the lowest summed cohort frequency bin, the
response decreased as average cohort frequency decreased.

3.2.3. Lexicality effects over time
A second major goal of the present study was to understand

how lexical variables affect neural activity over time, as informa-
tion about the stimulus identity is changing. While the main effects
of each of these variables is informative for understanding the data
set at an average time and position, language comprehension is a
dynamic process that unfolds throughout the entire timecourse
of acoustic input. To understand how real words and pseudowords
differentially modulate activity over time, we examined the inter-
action between lexicality and the polynomial time terms included



Fig. 3. Interactions of linguistic predictors. Predicted values for significant (t > 2) interactions of linguistic predictors. In all figures, gray error bars indicate 99% confidence
intervals. (a) Cohort size significantly interacted with lexicality. There is a strong decrease in the predicted neural response to words as cohort size shrinks. This effect is
relatively attenuated for pseudowords. (b) Cohort size and average cohort frequency also interacted. The effect of decreasing cohort size on the neural response was strongest
in the most frequent cohorts. (c) Cohort size and summed cohort frequency had a different interaction pattern compared to average cohort frequency. For the highest and
mid-range summed frequencies, the predicted response decreased as cohort size decreased. This effect was reversed for cohorts with the smallest summed cohort
frequencies. (d) Average and summed cohort frequency interacted, suggesting a dissociation between these metrics. Responses in high and mid summed cohorts increased as
average cohort frequency decreased. This effect was reversed for low summed cohorts.
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in the GCA model. Each polynomial term in the model captures a
different way in which the neural signal can change over time.
The interaction of each predictor with the linear term accounts
for changes in the slope of the curve, while the quadratic term
describes the steepness of the curve and how symmetrical or cen-
tered the curve is. Effects in the tails of the curves are captured by
the cubic and quartic terms (Mirman et al., 2008), which con-
tributed significantly but relatively subtly to many of the models,
and are thus not discussed in detail below.

In the raw data, we observed that the latency to the peak of a
response was later for pseudowords than for real words (Fig. 4a,
upper panel). As the results for individual electrodes across the
A–P axis of the temporal lobe illustrate (Fig. 4a, lower panel),
GCA successfully captured the fine-scale dynamics of magnitude
and latency differences between real words and pseudowords.

To understand specifically how these effects vary as a function
of time, we examined the interaction of lexicality with the polyno-
mial time terms. There was a significant interaction with all four
time terms, including the linear term (b = 3.512, t = 13.53) and
quadratic term (b = 3.261, t = 17.48). Positive interactions with
the first- and second-order time terms indicate that compared to
pseudowords, words had a shallower slope (linear term) and an
earlier or less centered peak than pseudowords (quadratic term).
Thus, responses to words often reached the peak of the neural
response more quickly than responses to pseudowords, and typi-
cally also decreased more rapidly over the course of a trial
(Fig. 4a, lower panels).

Given that neural activity in the auditory ventral stream flows
primarily in the posterodorsal-to-anteroventral direction over
time, we included a three-way interaction between lexicality, each
position term (A–P and D–V), and each time term in the model. A–P
position had significant interaction effects with all four time terms
(linear term: b = 0.111, t = 7.83; quadratic term: b = 0.010, t = 9.48;
quartic term: b = 0.005, t = 11.18; cubic term: b = 0.0012, t = 12.33),
indicating that the steepness, peak timing, and tails of the response
curves to words and pseudowords varied across the anterior–pos-
terior axis (see relative curve shapes in Fig. 4a). The interaction
with dorsal–ventral position was not significant for any time term,
indicating that distance from the Sylvian fissure did not impact the
difference between words and pseudowords at any point in time.

In the linear term, both words and pseudowords at early time
points have larger responses in posterior than anterior sites. In
contrast, at late time points, both stimulus types have larger
responses in anterior than posterior sites. However, at time points
near the middle of the trial (centered around 750 ms after stimulus
onset), words have greater responses in posterior sites, while pseu-
dowords have greater responses at anterior sites. This indicates
that the greatest distinction between the steepness of the curve
in response to words and pseudowords comes at the midpoint of
the trial.

These results suggest that while the overall responses in STG
neural populations reflect word–pseudoword differences, the
underlying computations associated with lexicality are temporally
and spatially distributed. The interactions across electrodes
between lexicality and time indicate that lexical status influences
neural processing well before and well after the point at which it
is possible, through a search of the lexical cohort, to determine
whether a familiar or unfamiliar word was heard.

3.2.4. Cohort statistics over time
Cohort size, average cohort frequency, and summed cohort fre-

quency are all dynamic properties of the mental lexicon; they
change as acoustic information arrives and as predictions about a
word form’s identity are updated (Fig. 1a and b). Therefore, we
examined the interactions between these lexical statistics and
the polynomial time terms to understand their varying influences
over time. We restrict our discussion here to the linear and quad-
ratic terms, as the effects of the cubic and quartic terms are subtle
and are reflected primarily in the tails of the curves. Full model
coefficients are reported in Supplemental Table 1.

The interaction between cohort size and the linear time term
was negative (b = �5.254, t = �14.07). A negative cohort size by
linear time term interaction indicates a steeper slope at larger
cohort sizes. This pattern is expected, as larger cohort sizes are
found at the beginning of a stimulus, when more lexical items fit
the acoustic input. We observed the same pattern for the quadratic
term (b = �4.222, t = �15.69). A negative cohort size by quadratic
term indicates that as cohort size decreased, the neural response
reached its peak more slowly. This effect can be seen in Fig. 4b,
where, particularly in the posterior and middle STG electrodes,
responses to larger cohorts tended to peak, and then decline, more
quickly than smaller cohorts, which have more centered curves.

Next, we examined the effects of the two cohort frequency met-
rics. Average cohort frequency had a positive interaction with the
linear term (b = 0.0766, t = 9.4), and a negative quadratic term
interaction (b = �0.0467, t = �6.46). These results indicate that
cohorts that had lower lexical frequencies had steeper slopes, but
reached their peak response more slowly (Fig. 4c). Summed cohort



Fig. 4. Linguistic variables show different effects on neural activity across time. (a) Actual neural responses (upper plot) to words (red) and pseudowords (blue) and GCA
predicted responses (lower plot) for three single electrodes show that the GCA model captures the temporal dynamics of neural activity. These responses to words and
pseudowords (with 95% confidence intervals) over time from anterior, middle, and posterior temporal lobe electrodes illustrate different lexicality effects across the anterior–
posterior axis of the temporal lobe. Critically, the difference between words and pseudowords varies as a function of both time and location. GCA model predicted responses
for the same electrodes show similar effects, demonstrating the efficacy of this statistical technique for ECoG data. (b) Actual (upper) and predicted (lower) responses to
cohort size in the same three electrodes. Cohort size is binned into high, mid, and low within each time point to show the predictor’s effect on the shape of the response. The
smallest cohorts had the biggest responses, particularly at anterior sites. (c) Responses and predictions for three levels of average cohort frequency in the same electrodes.
Responses to cohorts with low average frequency had the strongest responses. (d) Responses and predictions for summed cohort frequency; in contrast to average cohort
frequency, cohorts with mid-range summed frequency had the highest responses.
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frequency had a significant negative interaction with the linear
term (b = �0.0587, t = �7.07), but not the quadratic term, indicat-
ing steeper slopes at cohorts with a larger number of frequent
members (Fig. 4d).

As with the main effects of cohort size and cohort frequency,
the direction of the interaction terms varied by location along
the anterior–posterior and dorsal–ventral axes of the temporal
lobe. For cohort size, these effects were primarily present along
the anterior–posterior axis (linear term: b = �0.191, t = �9.49;
quadratic term: b = �0.157, t = �10.87; Fig. 4b). There were no sig-
nificant effects of cohort size along the dorsal–ventral axis for any
time terms.

For average cohort frequency, the linear (b = 0.0013, t = 4.42)
and quadratic (b = �0.002, t = �7.78) terms were significant along
the anterior–posterior axis (Fig. 4c). Unlike cohort size, average
cohort frequency did interact along the dorsal–ventral axis (linear:
b = �.0070, t = 8.89; quadratic: b = �0.0064, t = �8.85). Summed
cohort frequency also interacted along the A–P (linear:
b = �0.0015, t = �5.02; quadratic: b = 0.0016, t = 4.20; Fig. 4d)
and D–V (linear: b = �0.0056, t = �7.18; quadratic: b = 0.0041,
t = 5.75) axes.

We found that the signs of the anterior–posterior interaction
terms were opposite for average cohort frequency and summed
cohort frequency, indicating a dissociation between the effects of
the two metrics. Fig. 4c and d illustrates the difference between
these effects in three example electrodes along the A–P axis. For
average cohort frequency, the least frequent cohorts had the stron-
gest responses, latest peaks, and least steep slopes. By contrast,
cohorts with a mid-range summed cohort frequency are the ones
with the strongest, latest peak responses. These differences
between the two metrics are particularly clear in the anterior
electrode.

Taken together, these results suggest that the integration of lex-
ical information unfolds across the temporal lobe as a word form is
heard and processed. The number of lexical competitors (cohort
size) appears to be exclusively encoded in the anterior–posterior
dimension. Both average and summed cohort frequency informa-
tion vary along both the anterior–posterior and dorsal–ventral
axes. The anterior–posterior dimension also appears to encode dif-
ferences between summed and average cohort frequency across
time.
4. Discussion

We used high-resolution direct intracranial recordings to exam-
ine how the ventral stream for speech processes lexical informa-
tion in both familiar and novel word forms. We found that
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neural activity recorded from the temporal lobe while participants
listened to words and pseudowords reflects differences between
these broad categories with relatively complex temporal dynamics.
Further, responses to spoken stimuli were modulated by language-
level features – cohort size, average cohort frequency, and summed
cohort frequency – that reflect the structure and organization of
the mental lexicon. Finally, all of these variables modulated neural
activity on specific time scales, suggesting that multiple lexical fea-
tures are integrated with bottom-up acoustic–phonetic input
throughout the course of hearing a spoken stimulus.

Generally, our results are consistent with the dominant theoret-
ical accounts of speech processing, which posit a hierarchical orga-
nization of spoken language representations along the temporal
lobe (Hickok & Poeppel, 2007; Scott & Wise, 2004). The temporal
progression of peak latency high-gamma activity in our data sug-
gests a flow of information processing from more posterior-
dorsal to more anterior-ventral temporal lobe sites. Existing theo-
ries of the neural basis of speech processing typically argue that
this progression reflects distinct, but partially overlapping repre-
sentations, including acoustic, phonetic, phonemic, and lexical
sub-processes (DeWitt & Rauschecker, 2012; Gow, Keller,
Eskandar, Meng, & Cash, 2009; Scott, Blank, Rosen, & Wise,
2000). Our data add a new level of specificity to describe the flow
of information as not simply being a lexical search or phonemic
concatenation process, but rather a temporally non-linear lexical
retrieval process. These results suggest that words are not stored
and accessed directly as information propagates through the tem-
poral lobe, but rather are integrated with multiple levels of lexical
and sub-lexical knowledge.

We hypothesized that activity along the auditory ventral stream
additionally reflects the online integration of high-order lexical
knowledge, in this case in the form of cohort statistics. Our results
provide novel evidence that the brain uses information about the
other words in the mental lexicon that are consistent with the
input at a given time point to constrain and focus the lexical recog-
nition process. Established theories of spoken word recognition
generally claim that areas downstream of primary and secondary
auditory cortex are primarily responsible for lexical processing,
and in fact store word form and associated information (Davis &
Gaskell, 2009; Gow, 2012; Hickok & Poeppel, 2007). Our results,
by contrast, suggest a different process for how lexical information
is represented during online speech processing. Incoming acoustic
input is not simply sequentially matched with stored templates,
but rather is processed in the context of deeply learned knowledge
about other words in the language that share important lexical fea-
tures (Toscano, Anderson, & McMurray, 2013). This provides
empirical information about how spatially and temporally dis-
tributed lexical representations (Marslen-Wilson, 1987;
McClelland & Elman, 1986) are stored and accessed rapidly during
speech perception, often dependent on the context in which they
are heard (Leonard & Chang, 2014).

Our data suggest that these same processes of lexical integra-
tion are at work when novel forms are encountered. Both familiar
words and pseudowords showed interactions with temporal fea-
tures, although not always in the same manner or direction, sup-
porting the idea that the language comprehension system treats
pseudowords as potentially valid word forms (De Vaan et al.,
2007). Given our findings, it is unlikely that the brain is primarily
concerned with binary distinctions such as real words versus pseu-
dowords. It is possible that in many contexts, pseudowords may be
treated simply as very low frequency real words, suggesting that a
frequency gradient drives most lexicality effects reported in the lit-
erature (Prabhakaran, Blumstein, Myers, Hutchison, & Britton,
2006). Thus, the salient distinctions between real words and pseu-
dowords may be based on language-level statistics and distribu-
tions of lexical information.
We hypothesized that three critical lexical features are cohort
size (Magnuson et al., 2007; Marslen-Wilson, 1987, 1989), average
cohort frequency (Luce & Large, 2001), and summed cohort fre-
quency, which describe target words in relation to other words
that share similar features. We found that these lexical statistics
modulate neural activity, suggesting that temporal lobe responses
are being mediated on-line by information from learned lexical
information. These statistics interacted with both lexicality and
time, consistent with unfamiliar word forms being processed as
potential known words using information about their cohorts.
Thus, the process of spoken word recognition is not simply a
bottom-up analysis of acoustic signals, and lexical processing is
not spatially or temporally restricted to occur only after lower-
level processing is complete. Rather, lexical recognition is also
influenced by statistical information from the lexicon, helping to
constrain the space of possible forms matching the acoustic input.
This occurs even at posterior temporal lobe sites typically attribu-
ted to phonetic or phonological processing, suggesting that lexical
competition and selection are encoded along the pathway of the
auditory ventral stream, and do not exclusively rely on connections
from other brain regions.

The exact nature of the relationship between cohort size,
summed cohort frequency, and average cohort frequency remains
an open question. We found evidence for dissociation between
these metrics, but we do not have a complete understanding of
how these statistics contribute to the process of lexical competi-
tion and selection. One possibility is that the processing of spoken
words along the ventral stream involves multiple simultaneous
quantifications of lexical competitors. One process may be con-
cerned with the number of competitors and their average lexical
frequency, while another may track a summation of the number
and frequency of competitors. Future work is needed to under-
stand the independent contribution of each metric in more detail,
and how each of these lexical statistics contributes to the rapid and
largely automatic process of spoken word recognition.

This investigation of lexical comprehension did not exhaus-
tively examine every possible lexical statistic, and there is more
to be learned about the ways that statistical properties of language
shape ventral stream representations during spoken word recogni-
tion. In particular, phonotactic probability and neighborhood den-
sity (Pylkkänen, Stringfellow, & Marantz, 2002; Vitevitch & Luce,
1999) are two properties that are known to influence lexical pro-
cessing. While we did not find an effect of phonotactics in this data
set, which utilized a selective set of stimuli, it is known that phono-
tactic probability mediates the neural processing of acoustic input
and stored lexical knowledge (Leonard, Bouchard, Tang, & Chang,
2015). Stimulus sets that carefully control for phonotactics could
shed light on how sub-lexical statistics interact with the specific
types of lexical statistics we describe here. Similarly, stimuli that
systematically vary neighborhood density would provide more
information about the influence of lexical competitors that have
a very similar form to the target word. Our four-syllable stimuli
had very few neighbors, and they also had relatively low lexical
frequencies. Future work that explicitly leverages stimulus variety
(high and low phonotactics, long and short forms, highly frequent
and infrequent words, in dense and sparse neighborhoods) would
provide a valuable test of how the cohort statistics described here
interact with other metrics of lexical and sub-lexical competition.
It will be particularly useful to learn if more common forms engage
a different processing pathway than the one we describe here, or
whether differences are primarily reflected in the magnitude of
the response within overlapping ventral stream regions. Finely-
controlled stimulus sets could also take advantage of decoding
analyses (King & Dehaene, 2014) by explicitly quantifying the
degree of confusion between competing lexical forms which share
particular lexical or sub-lexical properties at a given point in time.
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Human intracranial studies necessarily involve subject popu-
lations that have abnormal neurological conditions (intractable
epilepsy). Furthermore, due to the rarity of these recordings,
most ECoG studies have small numbers of participants. For these
reasons, the data must be interpreted in the context of other
non-invasive recording modalities that potentially provide a
broader and more general picture of neural activity. However,
the unique qualities of intracranial recordings make these data
an important complement to more traditional neurolinguistic
studies, in that they provide simultaneously fine spatial and
temporal resolution that is unattainable with non-invasive
recording techniques. In general, intracranial methods agree with
non-invasive data (e.g. McDonald et al., 2010), and therefore rep-
resent an important contribution to studies of neural processing
of language.

We also used an analysis technique that overcomes several
limitations of traditional methods for time-series data. The inte-
gration of spatial and temporal information was critical to
describing response patterns to these stimuli. In the temporal
dimension, a single electrode may show a stronger response to
one stimulus type early in a trial, and the other later in a trial.
In terms of space, two electrodes at different sites can show a
preference for either words or pseudowords, even if their rela-
tive timing is similar. Collapsing across either the spatial or
temporal dimension could potentially mask these effects. Here,
GCA (Magnuson et al., 2007; Mirman et al., 2008) allowed us
to model neural data and lexical variables explicitly in terms
of how they change over time on a millisecond level. The
fine-scale dynamics we observed suggest that as speech input
is processed in real time, numerous sub-lexical and lexical fea-
tures are contributing to the activity in the temporal lobe
speech network.

Taken together, our results suggest that the language compre-
hension system is a complex pathway in which the response to
acoustic input is influenced by the statistical regularities of the lis-
tener’s prior linguistic experience. This pathway is flexible enough
to engage in similar processing strategies for familiar words and
novel forms; the effect of prior experience with word forms influ-
ences the processing of both types of stimuli. The fact that both
types of stimuli are processed in the context of learned lexical
statistics suggests that word understanding is the result of a con-
tinuous and highly interconnected network of neural computa-
tions, rather than a modular system with discrete spatial and
temporal elements.
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